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It is known that in the two-dimensional disordered superconductors electron-electron interactions in the
Cooper channel lead to the negative logarithmical in temperature correction to the tunneling conductance,

�gDOS�−ln�
Tc

T−Tc
�, above the critical temperature Tc. Physically this result appears due to the density-of-states

suppression by superconductive fluctuations near the Fermi level. It is interesting that the other correction,
which accounts for the Maki-Thompson-type interaction of fluctuations, is positive and exhibits strong power

law, �gMT� �
Tc

T−Tc
�3, which dominates the logarithmic term in the immediate vicinity of the critical temperature.

An interplay between these two contributions determines the zero-bias anomaly in fluctuating superconductors.
This Brief Report is devoted to the fate of such interaction corrections in the ballistic superconductors. It turns
out that ballistic dynamic fluctuations perturb the single-particle density of states near the Fermi level at the
energy scale ���Tc�T−Tc�, which is different from ��T−Tc, relevant in the diffusive case. As the conse-
quence, fluctuation region becomes much broader. In this regime we confirm that correction to the tunneling
conductance remains negative and logarithmic not too close to the critical temperature while in the immediate

vicinity of the transition we find different power law for the Maki-Thompson contribution, �gMT� �
Tc

T−Tc
�3/2. We

suggest that peculiar nonmonotonous temperature dependence of the tunneling conductance may be probed via
magnetotunnel experiments.
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As it is well known,1 the leading-order fluctuation correc-
tions to the conductivity due to electron-electron interaction
in the Cooper channel in the vicinity of the superconducting
transition are given by the Aslamazov-Larkin2 �AL�,
Maki-Thompson3,4 �MT�, and density-of-states5 �DOS� con-
tributions. The first one has a simple physical meaning of the
direct charge transfer mediated by fluctuation preformed
Cooper pairs. The other two contributions have a purely
quantum origin. The Maki-Thompson process can be under-
stood as the coherent Andreev reflection of electrons on the
local fluctuations of the order parameter while density of
states effects originate from the depletion of energy states
near the Fermi level by superconductive fluctuations. The
relative importance of these three contributions depends on
whether a superconductor is diffusive �T�el�1�, ballistic
�T�el�1�, or granular �����max�ETh ,T��. Here �el is the
elastic-scattering time on impurities, � is the mean level
spacing in the grain, � is the escape rate, ETh=D /�2 is Thou-
less energy for a grain with the typical size �, and D is the
diffusion coefficient. The Aslamazov-Larkin correction is es-
sential in both pure and impure superconductors. The Maki-
Thompson is important only in the disordered systems since
there is strong cancellation between MT and density-of-
states effects in the ballistic regime.6 Usually unimportant
DOS contributions become crucial in the systems containing
tunneling junctions7,8 or in granular superconductors.9,10

Tunnel barriers or granularity require multiple electron scat-
tering for AL and MT contributions to be important. As the
result, the magnitude of these effects is suppressed either by
an extra powers of tunneling matrix element ��tpk�2 �in the
case of tunnel barriers7� or by the small ratio g� /g��1 be-
tween intergrain g��� /� and intragrain g��ETh /� conduc-
tances �in the case of granular superconductors9,10�.

In the study7 of tunneling anomaly between diffusive thin-
film superconductors separated by an insulating layer it was

shown that there is one specific MT-type process that con-
tributes significantly to the renormalization of the tunneling
conductance. This process appears to the first order in tun-
neling probability �tpk�2, like DOS contribution, however, to
the second order in interaction, unlike DOS, thus containing
one extra power of small Ginzburg number, Gi	1. The rea-
son why these two contributions have to be accounted simul-
taneously is twofold. Unlike DOS correction �gDOS, which
leads to the suppression of the tunneling conductance above
the critical temperature Tc, the MT-type contribution �gMT
leads to its enhancement. Second, although being smaller by
the inverse power of dimensionless conductance g=
D
=kF�el /2��1, where 
=m /� is the single-particle density
of states in two dimensions and �el=vF�el, this specific MT
contribution has much stronger power-law temperature de-
pendence, �gMT�Gi2�

Tc

T−Tc
�3, as opposed to the weak loga-

rithmic in temperature correction coming from the density of
states, �gDOS�−Gi ln�

Tc

T−Tc
�. One should recall here that the

parameter that controls perturbative expansion over super-
conductive fluctuations is set by the Ginzburg number, which
is just inversely proportional to the dimensionless conduc-
tance, Gi�1 /g. So that, this is really a competition between
these two contributions that defines the nature of zero-bias
anomaly in fluctuating superconductors. As a result, due to
an opposite signs of �gDOS and �gMT terms the full conduc-
tance correction �gDOS+�gMT has nonmonotonous tempera-
ture dependence that even may change sign. Similar obser-
vations emerge in the context of granular superconductors.10

The reason for such strong temperature dependence of
�gMT was attributed in Refs. 7 and 10 to the importance of
vertex renormalization by coherent impurity scattering �Coo-
per ladders�. If so this would imply then that anomalous
Maki-Thompson contribution is absent in ballistic tunnel
junctions. Such conclusion is also appealing in the view of
strong cancellation of MT effects in ballistic regime of su-

PHYSICAL REVIEW B 81, 012501 �2010�

1098-0121/2010/81�1�/012501�4� ©2010 The American Physical Society012501-1

http://dx.doi.org/10.1103/PhysRevB.81.012501


perconducting thin films.6 However, as we show in this
work, in contrast to the expectation MT interaction correc-
tion to conductance in ballistic tunnel junctions remains im-
portant. It also exhibits strong temperature dependence, simi-
lar to that in the diffusive regime, but with the fractional
powers depending on dimensionality.

In what follows, we carry out a microscopic calculation of
interaction corrections to the tunneling conductance in bal-
listic superconductors T�el�1 with the help of standard tem-
perature diagrammatic technique.11 Within this formalism the
conductance

gT = − e
�

�V
Im��R�
�	
=eV �1�

is determined by the retarded component of the polarization
operator �R�
�. Here e is the electron charge and V is the
voltage applied across the junction. In the case of noninter-
acting electrons Matsubara version of the polarization opera-
tor is given by the simple loop diagram, which reads analyti-
cally as ��
m�=T
�n


pk�tpk�2G�p ,�n+
m�G�k ,�n�, where
tpk stands for the tunneling matrix element, �n=2�T�n
+1 /2� and 
m=2�Tm are fermionic and bosonic Matsubara
frequencies, respectively, and

G�p,�n� =
1

i�n − �p +
i sgn �n

2�el

, �p =
p2 − pF

2

2m
�2�

defines the single-particle Green’s function. Under the as-
sumption of momentum-independent tunneling amplitudes a
simple calculation then gives for the bare value of the con-
ductance gT= �

2 e2
2�tpk�2. The first-order interaction correc-
tion is given by the diagram shown in Fig. 1�a�

��DOS�
m� = 2T2 

�n�k



pkq

�tpk�2G2�p,�n�G�k,�n + 
m�

�G�q − p,�k − �n�L�q,�k� , �3�

which amounts an insertion of a single interaction line into
one of the Green’s function and coefficient of two accounts
for two such possibilities. This is the density of states effect
since upper part of the diagram is just a self-energy for the
G�p ,�k�. The interaction propagator is defined as

L�q,�k� = −
8T

�


1

Bq2 + �GL
−1 + ��k�

, �4�

where B=
7��3�vF

2

2d�3T
and �GL= �

8�T−Tc�
with d=1,2 ,3 being effec-

tive dimensionality of a superconductor �1d wire, 2d film, or
3d bulk�. This approximate form of the interaction is ob-
tained from the general expression1 L−1�q ,��=−
�ln T

Tc

+�� 1
2 +

��k�
4�T �+�2�T�el�q2−�� 1

2 �	, where ��T�el�=
vF

2�el
2

d ��� 1
2 �

+ 1
4�T�el

��� 1
2 �−�� 1

2 + 1
4�T�el

�	, under the assumption that char-
acteristic energies of fluctuations are small as compared to
the temperature, ��T−Tc�T, and momenta are small as
compared to the inverse thermal length �T=vF /T, q
��1 /B�GL��T

−1, which allows to expand digamma func-
tions � at small argument.

Since matrix elements tpk depend weakly on the momenta
near the Fermi-surface one can substitute summation over p
and k in Eq. �3� by the corresponding integration over the
energies 
pk�¯ �⇒ gT

4�e2 �−�
+�d�pd�k�¯ �. Once these integra-

tions are performed assuming ballistic limit max��n ,�k�
��el

−1 and approximating �q−p��p−vF ·q



pk

�tpk�2G2�p,�n�G�k,�n + 
m�G�q − p,�k − �n�

� −
�gT

4e2

sgn��n�sgn��n + 
m����n��n − �k�	
�vF · q + i�k − 2i�n�2 , �5�

where ��x� is the step function, one can complete summation
over the bosonic frequency �k in Eq. �3� by converting it into
the contour integral and make an analytical continuation
i�n→�+ i0. By combining the result for ��DOS with Eq. �1�
one obtains density-of-states-type correction to the zero-bias
conductance

�gDOS

gT
= Im


q



−�

+� d�

2T cosh2 �

2T

�

−�

+� d�

2�

LK�q,�� + LR�q,��tanh
� − �

2T

�� + vF · q − 2�+�2 , �6�

where we introduced Keldysh component of the interaction
propagator LK�q ,��= �LR�q ,��−LA�q ,��	coth �

2T while the
retarded/advances components LR�A��q ,�� are obtained from
Eq. �4� by the replacement ��k�→ � i�. The most singular in
T−Tc contribution to �gDOS comes from the branch-cut of
LK�q ,�� where LR�q ,��tanh �−�

2T term can be ignored. By tak-
ing LK�q ,���−�32iTc

2 /�
���Bq2+�GL�2+�2	−1 one can
complete energy integration in Eq. �6� and find

�gDOS

gT
=

4

�3

Re


q

���1

2
+

Bq2 + ivF · q + �GL
−1

4�T
�

Bq2 + �GL
−1 , �7�

where ���x� is the second derivative of the digamma func-
tion. The remaining q sum is dominated by the small mo-
mentum transfer where argument of the digamma function
can be taken as the constant ���1 /2�=−14��3� since

L(q, )�k

L(q, )�k

tpk

p,�n

q-p, -� �k n

p,�n

q-k, - -� � �k n m

k, +� �n m k, +� �n m

tpk
*�gMT

� �

��

L(q, )�k

tpk

p,�n

q-p, -� �k n

p,�n

k, +� �n m

tpk
*�gDOS

(a) (b)

FIG. 1. DOS and MT tunneling conductance correction
diagrams.
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max�Bq2 ,vFq ,�GL��T. One obtains then as the result12

�gDOS

gT
= − ad�C1

�Tc�GL 1d ,

C2 ln�Tc�GL� 2d ,
� �8�

where dimensionless prefactors are C1= 1

S�BTc

�
1

pF
2S

and C2

= 1

Bh �

1
pFh

Tc

�F
, with S being the cross-section area of the wire

and h being the thickness of the film. The numerical coeffi-
cients are a1�2.17 and a2�0.17. For the bulk 3d junctions
�gDOS /gT�−C3=

Tc


vFB is small and temperature independent.
Notice also that for 2d case C2 is linearly proportional to the
Ginzburg number. One sees from Eq. �8� that strong suppres-
sion in the density of states near the Fermi level translates
only into moderate renormalization of conductance �gDOS.
This observation brings us to the necessity to study contri-
butions to conductance coming form the interacting fluctua-
tions shown diagrammatically in Fig. 1�b�. The reason for
this is similar to that in the diffusive regime. First of all, this
contribution is of the same order in tunneling ��tpk�2 as the
density-of-states one, Fig. 1�a�. Second, although having an
extra small prefactor, Cd, this contribution is positive, unlike
�gDOS, and has much stronger temperature dependence,
which may dominate �gDOS in the near vicinity of the critical
temperature. The competition between these terms defines
the nature of zero-bias anomaly in fluctuating regime of bal-
listic superconductors.

The diagram in Fig. 1�b� defines Maki-Thompson correc-
tion to the polarization operator, which reads explicitly as

��MT�
m� = T3 

�n�k�k�



pkqq�

G2�p,�n�G�q − p,�k − �n�

�G2�k,�n + 
m�G�q� − k,�k� − �n�

�L�q,�k�L�q�,�k�� . �9�

It is important to comment here that although this correction
looks like second-order DOS, it in fact contains the mixture
of advanced and retarded blocks of the Green’s functions,
which by its analytical structure is the same as in the Maki-
Thompson diagram. This is precisely the reason why this
term is strongly temperature dependent. DOS effects always
involve Green’s functions of the same causality and thus
bring subleading temperature dependence. One calculates
momentum integrals in Eq. �9� by the prescription defined in
Eq. �5� and after the analytical continuation finds corre-
sponding correction to the conductance

�gMT

gT
= −

1

2�2T
Re


qq�



−�

+� d�

cosh2 �

2T


 

−�

+�

d�d��

�

Im�LR�q,��	Im�LA�q�,���	coth� �

2T
�coth���

2T
�

�vF · q + � − 2�+�2�vF · q� − �� + 2�−�2 ,

�10�

where ��=�� i0 stands as the reminder of analyticity. After
the consecutive energy integrations this formula simplifies to

�gMT

gT
=

256Tc
3

�
2 Re

qq�

1

�Bq2 + �GL
−1 ��Bq�2 + �GL

−1 �

�
1

�Bq2 + Bq�2 + ivF · q + ivF · q� + 2�GL
−1 �3 . �11�

As compared to the corresponding result in the diffusive
case7 the interesting feature here is appearance of the vF ·q
factors, which limits the phase space for the momentum
transfer and in a way changes power-law behavior of the
singular term in the conductance. The remaining momentum
integration can be completed in the closed form and gives

�gMT

gT
= bdCd

2�Tc�GL��7−2d�/2, �12�

for d=1,2 ,3 with b1=0.06, b2=1.4�10−3, and b3=4
�10−3. As anticipated �gMT is positive and has much stron-
ger power-law temperature dependence then �gDOS near Tc.
We conclude here that anomalous temperature dependence of
�gMT known from the impurity vertex renormalization in the
diffusive case7 survives in the ballistic regime as well, how-
ever, with the fractional powers of T−Tc.

There are two more diagrams in the second order in in-
teraction that contribute to the conductance renormalization.
These are shown in Fig. 2 and define Aslamazov-Larkin cor-
rections. However, unlike DOS and MT terms in Fig. 1 these
contributions appear only to the second order in the tunnel-
ing transparency and thus contain and extra smallness
��tpk�4. An estimate for these diagrams for two-dimensional
case gives �gAL /gT� �tpk�2C2

2�Tc�GL�1/2, which has smaller
amplitude and weaker temperature dependence then �gMT in
Eq. �12�.

There is simple physical picture which allows to under-
stand these results at the qualitative level. The current in a
tunnel junction is determined by the product of the density of
states convoluted with the difference of Fermi function,
which measure occupation of the given state, namely, I�V�
��d��fF��+eV�− fF���	
��+eV�
���. Within the linear re-
sponse one can identify then from I�V� the zero-bias DOS:
�gDOS /gT�� �
���


 cosh−2� �
2T � d�

2T and MT: �gMT /gT

�� �
2���

2 cosh−2� �

2T � d�
2T conductance corrections. Thus, estima-

tion of the temperature dependence of �gDOS and �gMT re-
quires knowledge of the detailed structure of the density of
states above Tc. To this end, let us understand at which en-
ergy window �� superconductive fluctuations deplete single-
particle energy states near the Fermi level and what is the
depth of this suppression. The energy scale can be estimated
knowing the time �� needed for the superconductive fluctua-
tion to spread over the distance of coherence length ��T�

(a) (b)

FIG. 2. Aslamazov-Larkin interaction corrections to the tunnel-
ing conductance which appear in the higher order in transparency
��tpk�4 then DOS and MT contributions shown in Fig. 1.
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=�0� Tc

T−Tc
. In the disordered case �� is determined by the

diffusive motion of particles and gives for �� via the uncer-
tainty relation �����

−1=D�−2�T�=�GL
−1 �T−Tc. In the clean

limit ballistic motion defines another scale12 �����

=vF�−1�T���Tc�T−Tc�. The depth of the depletion region in
DOS, �
���=− 1

� Im �R���, follows from the self-energy of
the electron Green’s function ���n�=T
pk�n

G2�p ,�n�G�q
− p ,�k−�n��2�q ,�n ,�k−�n�L�q ,�k�, where impurity vertex
��q ,�n ,�m�=�el

−1��−�n�m� / �Dq2+ ��n−�m�� is present only in
the diffusive limit. Having calculated �R��� DOS renormal-
ization reads �
D�B����� �Tc�GL��6−d�/2FD�B��2��GL�, where
FD�B��2��GL� are energy depending scaling functions which
are universal for the given dimensionality. For example, in
the diffusive 2d case5

FD�z� =
1

1 + z2 +
�1 − z2�

2�1 + z2�2 ln�1 + z2

4
� −

2z arctan�z�
�1 + z2�2 �13�

while in the ballistic regime12

FB�z� =
1

z2 + �
�1 −

z
�z2 + �

ln� z + �z2 + �

��
�� , �14�

where �= ��3 /7��3�	Tc�GL. The two basic properties of the
scaling functions are FD��→0�→const while FB��→0�
→1 /� which is actually valid for any dimensionality and
also �−�

+�FD�B����d�=0. The latter is the manifestation of con-
servation law for the total number of states. Knowing these
facts one readily estimates �
D�0�� �Tc�GL��6−d�/2 and
�
B�0�� �Tc�GL��4−d�/2. The most singular contribution to the
MT conductance renormalization comes from the energy re-
gion of maximally depleted �
��� where interaction of super-
conductive fluctuations is the strongest. The width of this
region is roughly �� and, thus, interaction correction may be
estimated as �gMT /gT��
2�0���. For the diffusive case this
gives

�gMT

gT
� �Tc�GL�2��6−d�/2�Tc�GL�−1 � � Tc

T − Tc
�5−d

, �15�

which reproduces results of Ref. 7 while in the ballistic case

�gMT

gT
� �Tc�GL�2��4−d�/2�Tc�GL�−1/2 � � Tc

T − Tc
��7−2d�/2

,

�16�

which agrees with our explicit diagrammatic calculation
�Eqs. �9�–�12�	. The reason why �gDOS remains logarithmic
in both cases is due to the conservation law �−�

+��
D�B����d�
=0. Indeed, when performing energy integration in
�gDOS /gT�� �
���


 cosh−2� �
2T � d�

2T one necessarily accounts for
the pole of the Fermi function which set the relevant energies
to be of the order of T and not T−Tc. For ��T both scaling
functions FD�B���� coincide to the leading singular order in
T−Tc.

The possible way to probe these temperature anomalies in
the conductance above Tc may be via magnetotunneling. Let
us recall that magnetic field H acts as an effective Cooper
pair breaking factor that drives a superconductor away from
the critical region. As the result, the relevant energies � that
determine conductance corrections in Eqs. �6� and �10� are
set by the largest cutoff between inverse Ginzburg-Landau
time �GL

−1 �T−Tc and cyclotron frequency �H�H, namely,
��max��H ,�GL

−1 �. So that by changing the field one effec-
tively traces temperature dependence of �g. Although an ex-
plicit calculations of magnetoconductance in ballistic super-
conductors is quite involved task we rely here on the
plausible suggestion that is based on the results known for
the diffusive case.13 One may expect logarithmic in magnetic
field dependence for the DOS correction �gDOS�H� /gT�
−ln�Tc /�H�, when �H��GL

−1 and a power law of H for
�gMT�H�.
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